Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the infinite-dimensional moment problem

Published 18 Dec 2017 in math.FA | (1712.06360v1)

Abstract: This paper deals with the moment problem on a (not necessarily finitely generated) commutative unital real algebra $A$. We define moment functionals on $A$ as linear functionals which can be written as integrals over characters of $A$ with respect to cylinder measures. Our main results provide such integral representations for $A_+$--positive linear functionals (generalized Haviland theorem) and for positive functionals fulfilling Carleman conditions. As an application we solve the moment problem for the symmetric algebra $S(V)$ of a real vector space $V$. As a byproduct we obtain a new approaches to the moment problem on $S(V)$ for a nuclear space $V$ and to the integral decomposition of continuous positive functionals on a barrelled nuclear topological algebra $A$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.