Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein Distributionally Robust Optimization and Variation Regularization (1712.06050v3)

Published 17 Dec 2017 in cs.LG, math.OC, and stat.ML

Abstract: Wasserstein distributionally robust optimization (DRO) has recently achieved empirical success for various applications in operations research and machine learning, owing partly to its regularization effect. Although connection between Wasserstein DRO and regularization has been established in several settings, existing results often require restrictive assumptions, such as smoothness or convexity, that are not satisfied for many problems. In this paper, we develop a general theory on the variation regularization effect of the Wasserstein DRO - a new form of regularization that generalizes total-variation regularization, Lipschitz regularization and gradient regularization. Our results cover possibly non-convex and non-smooth losses and losses on non-Euclidean spaces. Examples include multi-item newsvendor, portfolio selection, linear prediction, neural networks, manifold learning, and intensity estimation for Poisson processes, etc. As an application of our theory of variation regularization, we derive new generalization guarantees for adversarial robust learning.

Citations (129)

Summary

We haven't generated a summary for this paper yet.