Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On character space of the algebra of BSE-functions (1712.05920v1)

Published 16 Dec 2017 in math.FA

Abstract: Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{\rm{BSE}}(\Delta(A))$ consisting of all BSE-functions on $\Delta(A)$ where $\Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterization of $\Delta(C_{\rm{BSE}}(\Delta(A)))$ and in the general case we give a partial answer. Also, using the Fourier algebra, we show that $C_{\rm{BSE}}(\Delta(A))$ is not a $C*$-algebra in general. Finally for some subsets $E$ of $A*$, we define the subspace of BSE-like functions on $\Delta(A)\cup E$ and give a nice application of this space related to Goldstine's theorem.

Summary

We haven't generated a summary for this paper yet.