Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical inference for Vasicek-type model driven by Hermite processes (1712.05915v2)

Published 16 Dec 2017 in math.PR, math.ST, and stat.TH

Abstract: Let $Z$ denote a Hermite process of order $q \geq 1$ and self-similarity parameter $H \in (\frac{1}{2}, 1)$. This process is $H$-self-similar, has stationary increments and exhibits long-range dependence. When $q=1$, it corresponds to the fractional Brownian motion, whereas it is not Gaussian as soon as $q\geq 2$. In this paper, we deal with a Vasicek-type model driven by $Z$, of the form $dX_t = a(b - X_t)dt +dZ_t$. Here, $a > 0$ and $b \in \mathbb{R}$ are considered as unknown drift parameters. We provide estimators for $a$ and $b$ based on continuous-time observations. For all possible values of $H$ and $q$, we prove strong consistency and we analyze the asymptotic fluctuations.

Summary

We haven't generated a summary for this paper yet.