Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Target Acquisition Rates with Feedback Codes (1712.05865v1)

Published 15 Dec 2017 in cs.IT, eess.SP, math.IT, and stat.AP

Abstract: This paper considers the problem of acquiring an unknown target location (among a finite number of locations) via a sequence of measurements, where each measurement consists of simultaneously probing a group of locations. The resulting observation consists of a sum of an indicator of the target's presence in the probed region, and a zero mean Gaussian noise term whose variance is a function of the measurement vector. An equivalence between the target acquisition problem and channel coding over a binary input additive white Gaussian noise (BAWGN) channel with state and feedback is established. Utilizing this information theoretic perspective, a two-stage adaptive target search strategy based on the sorted Posterior Matching channel coding strategy is proposed. Furthermore, using information theoretic converses, the fundamental limits on the target acquisition rate for adaptive and non-adaptive strategies are characterized. As a corollary to the non-asymptotic upper bound of the expected number of measurements under the proposed two-stage strategy, and to non-asymptotic lower bound of the expected number of measurements for optimal non-adaptive search strategy, a lower bound on the adaptivity gain is obtained. The adaptivity gain is further investigated in different asymptotic regimes of interest.

Citations (18)

Summary

We haven't generated a summary for this paper yet.