Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Game-Theoretic Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy (1712.05441v3)

Published 14 Dec 2017 in cs.CR

Abstract: Cyberattacks on both databases and critical infrastructure have threatened public and private sectors. Ubiquitous tracking and wearable computing have infringed upon privacy. Advocates and engineers have recently proposed using defensive deception as a means to leverage the information asymmetry typically enjoyed by attackers as a tool for defenders. The term deception, however, has been employed broadly and with a variety of meanings. In this paper, we survey 24 articles from 2008-2018 that use game theory to model defensive deception for cybersecurity and privacy. Then we propose a taxonomy that defines six types of deception: perturbation, moving target defense, obfuscation, mixing, honey-x, and attacker engagement. These types are delineated by their information structures, agents, actions, and duration: precisely concepts captured by game theory. Our aims are to rigorously define types of defensive deception, to capture a snapshot of the state of the literature, to provide a menu of models which can be used for applied research, and to identify promising areas for future work. Our taxonomy provides a systematic foundation for understanding different types of defensive deception commonly encountered in cybersecurity and privacy.

Citations (136)

Summary

We haven't generated a summary for this paper yet.