Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural and computational results on platypus graphs (1712.05158v1)

Published 14 Dec 2017 in math.CO and cs.DM

Abstract: A platypus graph is a non-hamiltonian graph for which every vertex-deleted subgraph is traceable. They are closely related to families of graphs satisfying interesting conditions regarding longest paths and longest cycles, for instance hypohamiltonian, leaf-stable, and maximally non-hamiltonian graphs. In this paper, we first investigate cubic platypus graphs, covering all orders for which such graphs exist: in the general and polyhedral case as well as for snarks. We then present (not necessarily cubic) platypus graphs of girth up to 16---whereas no hypohamiltonian graphs of girth greater than 7 are known---and study their maximum degree, generalising two theorems of Chartrand, Gould, and Kapoor. Using computational methods, we determine the complete list of all non-isomorphic platypus graphs for various orders and girths. Finally, we address two questions raised by the third author in [J. Graph Theory \textbf{86} (2017) 223--243].

Citations (3)

Summary

We haven't generated a summary for this paper yet.