Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On purity theorem of Lusztig's perverse sheaves (1712.04167v2)

Published 12 Dec 2017 in math.RT, math.AG, and math.QA

Abstract: Let $Q$ be a finite quiver without loops and $\mathcal{Q}{\alpha}$ be the Lusztig category for any dimension vector $\alpha$. The purpose of this paper is to prove that all Frobenius eigenvalues of the $i$-th cohomology $\mathcal{H}i(\mathcal{L})|_x$ for a simple perverse sheaf $\mathcal{L}\in \mathcal{Q}{\alpha}$ and $x\in \mathbb{E}{\alpha}{Fn}=\mathbb{E}{\alpha}(\mathbb{F}_{qn})$ are equal to $(\sqrt{qn}){i}$ as a conjecture given by Schiffmann (\cite{Schiffmann2}). As an application, we prove the existence of a class of Hall polynomials.

Summary

We haven't generated a summary for this paper yet.