Characterization of temperatures associated to Schrödinger operators with initial data in Morrey spaces (1712.03952v3)
Abstract: Let $\mathcal{L}$ be a Schr\"odinger operator of the form $\mathcal{L} = -\Delta+V$ acting on $L2(\mathbb Rn)$ where the nonnegative potential $V$ belongs to the reverse H\"older class $B_q$ for some $q\geq n.$ Let $L{p,\lambda}(\mathbb{R}{n})$, $0\le \lambda<n$ denote the Morrey space on $\mathbb{R}{n}$. In this paper, we will show that a function $f\in L{2,\lambda}(\mathbb{R}{n})$ is the trace of the solution of ${\mathbb L}u=u_{t}+{\mathcal{L}}u=0, u(x,0)= f(x),$ where $u$ satisfies a Carleson-type condition \begin{eqnarray*} \sup_{x_B, r_B} r_B{-\lambda}\int_0{r_B2}\int_{B(x_B, r_B)} |\nabla u(x,t)|2 {dx dt} \leq C <\infty. \end{eqnarray*} Conversely, this Carleson-type condition characterizes all the ${\mathbb L}$-carolic functions whose traces belong to the Morrey space $L{2,\lambda}(\mathbb{R}{n})$ for all $0\le \lambda<n$. This result extends the analogous characterization founded by Fabes and Neri for the classical BMO space of John and Nirenberg.