Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing a Spatial-Temporal Contextual and Semantic Trajectory Clustering Framework (1712.03900v1)

Published 8 Dec 2017 in cs.DB

Abstract: This paper reports on ongoing research investigating more expressive approaches to spatial-temporal trajectory clustering. Spatial-temporal data is increasingly becoming universal as a result of widespread use of GPS and mobile devices, which makes mining and predictive analyses based on trajectories a critical activity in many domains. Trajectory analysis methods based on clustering techniques heavily often rely on a similarity definition to properly provide insights. However, although trajectories are currently described in terms of its two dimensions (space and time), their representation is limited in that it is not expressive enough to capture, in a combined way, the structure of space and time as well as the contextual and semantic trajectory properties. Moreover, the massive amounts of available trajectory data make trajectory mining and analyses very challenging. In this paper, we briefly discuss (i) an improved trajectory representation that takes into consideration space-time structures, context and semantic properties of trajectories; (ii) new forms of relations between the dimensions of a pair of trajectories; and (iii) big data approaches that can be used to develop a novel spatial-temporal clustering framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ivens Portugal (7 papers)
  2. Paulo Alencar (35 papers)
  3. Donald Cowan (28 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.