Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Black-box Compression Algorithms for Phase Retrieval (1712.03278v3)

Published 8 Dec 2017 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Compressive phase retrieval refers to the problem of recovering a structured $n$-dimensional complex-valued vector from its phase-less under-determined linear measurements. The non-linearity of measurements makes designing theoretically-analyzable efficient phase retrieval algorithms challenging. As a result, to a great extent, algorithms designed in this area are developed to take advantage of simple structures such as sparsity and its convex generalizations. The goal of this paper is to move beyond simple models through employing compression codes. Such codes are typically developed to take advantage of complex signal models to represent the signals as efficiently as possible. In this work, it is shown how an existing compression code can be treated as a black box and integrated into an efficient solution for phase retrieval. First, COmpressive PhasE Retrieval (COPER) optimization, a computationally-intensive compression-based phase retrieval method, is proposed. COPER provides a theoretical framework for studying compression-based phase retrieval. The number of measurements required by COPER is connected to $\kappa$, the $\alpha$-dimension (closely related to the rate-distortion dimension) of the given family of compression codes. To finds the solution of COPER, an efficient iterative algorithm called gradient descent for COPER (GD-COPER) is proposed. It is proven that under some mild conditions on the initialization, if the number of measurements is larger than $ C \kappa2 \log2 n$, where $C$ is a constant, GD-COPER obtains an accurate estimate of the input vector in polynomial time. In the simulation results, JPEG2000 is integrated in GD-COPER to confirm the superb performance of the resulting algorithm on real-world images.

Citations (8)

Summary

We haven't generated a summary for this paper yet.