Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orientable $\mathbb{Z}{}_{n}$-distance magic regular graphs (1712.02676v2)

Published 7 Dec 2017 in math.CO

Abstract: Hefetz, M\"{u}tze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation. In this paper we support the analogous question for distance magic labeling. Let $\Gamma$ be an Abelian group of order $n$. A \textit{directed $\Gamma$-distance magic labeling} of an oriented graph $\vec{G} = (V,A)$ of order $n$ is a bijection $\vec{l}:V \rightarrow \Gamma$ with the property that there is a \textit{magic constant} $\mu \in \Gamma$ such that for every $x \in V(G)$ $ w(x) = \sum_{y \in N{+}(x)}\vec{l}(y) - \sum_{y \in N{-}(x)} \vec{l}(y) = \mu. $ In this paper we provide an infinite family of odd regular graphs possessing an orientable $\mathbb{Z}{n}$-distance magic labeling. Our results refer to lexicographic product of graphs. We also present a family of odd regular graphs that are not orientable $\mathbb{Z}{n}$-distance magic.

Summary

We haven't generated a summary for this paper yet.