Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cutpoints for Random Walks on Quasi-Transitive Graphs (1712.02543v1)

Published 7 Dec 2017 in math.PR

Abstract: We prove that a simple random walk on quasi-transitive graphs with the volume growth being faster than any polynomial of degree 4 has a.s. infinitely many cut times, and hence infinitely many cutpoints. This confirms a conjecture raised by I. Benjamini, O. Gurel-Gurevich and O. Schramm [2011, Cutpoints and resistance of random walk paths, {\it Ann. Probab.} {\bf 39(3)}, 1122-1136] that PATH of simple random walk on any transient vertex-transitive graph has a.s. infinitely many cutpoints in the corresponding case.

Summary

We haven't generated a summary for this paper yet.