Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Local Analysis of Block Coordinate Descent for Gaussian Phase Retrieval (1712.02083v1)

Published 6 Dec 2017 in cs.IT, math.IT, math.NA, math.OC, and stat.ML

Abstract: While convergence of the Alternating Direction Method of Multipliers (ADMM) on convex problems is well studied, convergence on nonconvex problems is only partially understood. In this paper, we consider the Gaussian phase retrieval problem, formulated as a linear constrained optimization problem with a biconvex objective. The particular structure allows for a novel application of the ADMM. It can be shown that the dual variable is zero at the global minimizer. This motivates the analysis of a block coordinate descent algorithm, which is equivalent to the ADMM with the dual variable fixed to be zero. We show that the block coordinate descent algorithm converges to the global minimizer at a linear rate, when starting from a deterministically achievable initialization point.

Citations (4)

Summary

We haven't generated a summary for this paper yet.