Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum-of-squares optimization without semidefinite programming (1712.01792v3)

Published 5 Dec 2017 in math.OC

Abstract: We propose a homogeneous primal-dual interior-point method to solve sum-of-squares optimization problems by combining non-symmetric conic optimization techniques and polynomial interpolation. The approach optimizes directly over the sum-of-squares cone and its dual, circumventing the semidefinite programming (SDP) reformulation which requires a large number of auxiliary variables. As a result, it has substantially lower theoretical time and space complexity than the conventional SDP-based approach. Although our approach avoids the semidefinite programming reformulation, an optimal solution to the semidefinite program can be recovered with little additional effort. Computational results confirm that for problems involving high-degree polynomials, the proposed method is several orders of magnitude faster than semidefinite programming.

Summary

We haven't generated a summary for this paper yet.