Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tech Report: A Fast Multiscale Spatial Regularization for Sparse Hyperspectral Unmixing (1712.01770v3)

Published 5 Dec 2017 in cs.CV

Abstract: Sparse hyperspectral unmixing from large spectral libraries has been considered to circumvent limitations of endmember extraction algorithms in many applications. This strategy often leads to ill-posed inverse problems, which can benefit from spatial regularization strategies. While existing spatial regularization methods improve the problem conditioning and promote piecewise smooth solutions, they lead to large nonsmooth optimization problems. Thus, efficiently introducing spatial context in the unmixing problem remains a challenge, and a necessity for many real world applications. In this paper, a novel multiscale spatial regularization approach for sparse unmixing is proposed. The method uses a signal-adaptive spatial multiscale decomposition based on superpixels to decompose the unmixing problem into two simpler problems, one in the approximation domain and another in the original domain. Simulation results using both synthetic and real data indicate that the proposed method can outperform state-of-the-art Total Variation-based algorithms with a computation time comparable to that of their unregularized counterparts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (81)

Summary

We haven't generated a summary for this paper yet.