Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Predicate Abstraction and Counter-Example Guided Refinement (1712.01734v1)

Published 5 Dec 2017 in cs.LO and cs.SC

Abstract: In this paper we present a counter-example guided abstraction and approximation refinement (CEGAAR) technique for {\em partial predicate abstraction}, which combines predicate abstraction and fixpoint approximations for model checking infinite-state systems. The proposed approach incrementally considers growing sets of predicates for abstraction refinement. The novelty of the approach stems from recognizing source of the imprecision: abstraction or approximation. We use Craig interpolation to deal with imprecision due to abstraction. In the case of imprecision due to approximation, we delay application of the approximation. Our experimental results on a variety of models provide insights into effectiveness of partial predicate abstraction as well as refinement techniques in this context.

Citations (3)

Summary

We haven't generated a summary for this paper yet.