Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Bounds for Option Prices (1712.01385v5)

Published 4 Dec 2017 in q-fin.MF and math.OA

Abstract: Option pricing is the most elemental challenge of mathematical finance. Knowledge of the prices of options at every strike is equivalent to knowing the entire pricing distribution for a security, as derivatives contingent on the security can be replicated using options. The available data may be insufficient to determine this distribution precisely, however, and the question arises: What are the bounds for the option price at a specified strike, given the market-implied constraints? Positivity of the price map imposed by the principle of no-arbitrage is here utilised, via the Gelfand-Naimark-Segal construction, to transform the problem into the domain of operator algebras. Optimisation in this larger context is essentially geometric, and the outcome is simultaneously super-optimal for all commutative subalgebras. This generates an upper bound for the price of a basket option. With innovative decomposition of the assets in the basket, the result is used to create converging families of price bounds for vanilla options, interpolate the volatility smile, price options on cross FX rates, and analyse the relationships between swaption and caplet prices.

Summary

We haven't generated a summary for this paper yet.