Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Path model for an extremal weight module over the quantized hyperbolic Kac-Moody algebra of rank 2 (1712.01009v2)

Published 4 Dec 2017 in math.QA and math.RT

Abstract: Let $\mathfrak{g}$ be a hyperbolic Kac-Moody algebra of rank 2, and set $\lambda=\Lambda_{1} - \Lambda_{2}$, where $\Lambda_{1}$, $\Lambda_{2}$ are the fundamental weights. Denote by $V(\lambda)$ the extremal weight module of extremal weight $\lambda$ with $v_\lambda$ the extremal weight vector, and by $\mathcal{B}(\lambda)$ the crystal basis of $V(\lambda)$ with $u_\lambda$ the element corresponding to $v_\lambda$. We prove that (i) $\mathcal{B}(\lambda)$ is connected, (ii) the subset $\mathcal{B}(\lambda){\mu}$ of elements of weight $\mu$ in $\mathcal{B}(\lambda)$ is a finite set for every integral weight $\mu$, and $\mathcal{B}(\lambda){\lambda} = {u_\lambda}$, (iii) every extremal element in $\mathcal{B}(\lambda)$ is contained in the Weyl group orbit of $u_\lambda$, (iv) $V(\lambda)$ is irreducible. Finally, we prove that the crystal basis $\mathcal{B}(\lambda)$ is isomorphic, as a crystal, to the crystal $\mathbb{B}(\lambda)$ of Lakshmibai-Seshadri paths of shape $\lambda$.

Summary

We haven't generated a summary for this paper yet.