Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrable $sl(\infty)$-modules and Category $\mathcal O$ for $\mathfrak{gl}(m|n)$ (1712.00664v4)

Published 2 Dec 2017 in math.RT

Abstract: We introduce and study new categories T(g,k)of integrable sl(\infty)-modules which depend on the choice of a certain reductive subalgebra k in g=sl(\infty). The simple objects of these categories are tensor modules as in the previously studied category, however, the choice of k provides more flexibility of nonsimple modules. We then choose k to have two infinite-dimensional diagonal blocks, and show that a certain injective object K(m|n) in T(g,k) realizes a categorical sl(\infty)-action on the integral category O(m|n) of the Lie superalgebra gl(m|n). We show that the socle of K(m|n) is generated by the projective modules in O(m|n), and compute the socle filtration of K(m|n) explicitly. We conjecture that the socle filtration of K(m|n) reflects a "degree of atypicality filtration" on the category O(m|n). We also conjecture that a natural tensor filtration on K(m|n) arises via the Duflo--Serganova functor sending the category O(m|n) to O(m-1|n-1). We prove this latter conjecture for a direct summand of K(m|n) corresponding to the finite-dimensional gl(m|n)-modules.

Summary

We haven't generated a summary for this paper yet.