Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Domain Adversarial Learning for Slot Filling in Spoken Language Understanding (1711.11310v1)

Published 30 Nov 2017 in cs.CL

Abstract: The goal of this paper is to learn cross-domain representations for slot filling task in spoken language understanding (SLU). Most of the recently published SLU models are domain-specific ones that work on individual task domains. Annotating data for each individual task domain is both financially costly and non-scalable. In this work, we propose an adversarial training method in learning common features and representations that can be shared across multiple domains. Model that produces such shared representations can be combined with models trained on individual domain SLU data to reduce the amount of training samples required for developing a new domain. In our experiments using data sets from multiple domains, we show that adversarial training helps in learning better domain-general SLU models, leading to improved slot filling F1 scores. We further show that applying adversarial learning on domain-general model also helps in achieving higher slot filling performance when the model is jointly optimized with domain-specific models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bing Liu (212 papers)
  2. Ian Lane (29 papers)
Citations (30)