Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability in the homology of unipotent groups (1711.11080v4)

Published 29 Nov 2017 in math.AT, math.GR, and math.RT

Abstract: Let $R$ be a (not necessarily commutative) ring whose additive group is finitely generated and let $U_n(R) \subset GL_n(R)$ be the group of upper-triangular unipotent matrices over $R$. We study how the homology groups of $U_n(R)$ vary with $n$ from the point of view of representation stability. Our main theorem asserts that if for each $n$ we have representations $M_n$ of $U_n(R)$ over a ring $\mathbf{k}$ that are appropriately compatible and satisfy suitable finiteness hypotheses, then the rule $[n] \mapsto \widetilde{H}_i(U_n(R),M_n)$ defines a finitely generated OI-module. As a consequence, if $\mathbf{k}$ is a field then $dim \widetilde{H}_i(U_n(R),\mathbf{k})$ is eventually equal to a polynomial in $n$. We also prove similar results for the Iwahori subgroups of $GL_n(\mathcal{O})$ for number rings $\mathcal{O}$.

Summary

We haven't generated a summary for this paper yet.