Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Happiness Pursuit: Personality Learning in a Society of Agents (1711.11068v2)

Published 29 Nov 2017 in cs.MA and cs.AI

Abstract: Modeling personality is a challenging problem with applications spanning computer games, virtual assistants, online shopping and education. Many techniques have been tried, ranging from neural networks to computational cognitive architectures. However, most approaches rely on examples with hand-crafted features and scenarios. Here, we approach learning a personality by training agents using a Deep Q-Network (DQN) model on rewards based on psychoanalysis, against hand-coded AI in the game of Pong. As a result, we obtain 4 agents, each with its own personality. Then, we define happiness of an agent, which can be seen as a measure of alignment with agent's objective function, and study it when agents play both against hand-coded AI, and against each other. We find that the agents that achieve higher happiness during testing against hand-coded AI, have lower happiness when competing against each other. This suggests that higher happiness in testing is a sign of overfitting in learning to interact with hand-coded AI, and leads to worse performance against agents with different personalities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jun Wang (990 papers)
  2. Rafał Muszyński (1 paper)
Citations (2)