Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Patterns of Associated-Conditions through Topic Models of Electronic Medical Records (1711.10960v1)

Published 17 Nov 2017 in cs.CL

Abstract: Multiple adverse health conditions co-occurring in a patient are typically associated with poor prognosis and increased office or hospital visits. Developing methods to identify patterns of co-occurring conditions can assist in diagnosis. Thus identifying patterns of associations among co-occurring conditions is of growing interest. In this paper, we report preliminary results from a data-driven study, in which we apply a machine learning method, namely, topic modeling, to electronic medical records, aiming to identify patterns of associated conditions. Specifically, we use the well established latent dirichlet allocation, a method based on the idea that documents can be modeled as a mixture of latent topics, where each topic is a distribution over words. In our study, we adapt the LDA model to identify latent topics in patients' EMRs. We evaluate the performance of our method both qualitatively, and show that the obtained topics indeed align well with distinct medical phenomena characterized by co-occurring conditions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.