Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curriculum Q-Learning for Visual Vocabulary Acquisition (1711.10837v1)

Published 29 Nov 2017 in cs.CL

Abstract: The structure of curriculum plays a vital role in our learning process, both as children and adults. Presenting material in ascending order of difficulty that also exploits prior knowledge can have a significant impact on the rate of learning. However, the notion of difficulty and prior knowledge differs from person to person. Motivated by the need for a personalised curriculum, we present a novel method of curriculum learning for vocabulary words in the form of visual prompts. We employ a reinforcement learning model grounded in pedagogical theories that emulates the actions of a tutor. We simulate three students with different levels of vocabulary knowledge in order to evaluate the how well our model adapts to the environment. The results of the simulation reveal that through interaction, the model is able to identify the areas of weakness, as well as push students to the edge of their ZPD. We hypothesise that these methods can also be effective in training agents to learn language representations in a simulated environment where it has previously been shown that order of words and prior knowledge play an important role in the efficacy of language learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ahmed H. Zaidi (1 paper)
  2. Russell Moore (3 papers)
  3. Ted Briscoe (19 papers)
Citations (4)