Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Knapsack Problem under Expected Capacity Constraint (1711.10652v1)

Published 29 Nov 2017 in cs.DS

Abstract: Online knapsack problem is considered, where items arrive in a sequential fashion that have two attributes; value and weight. Each arriving item has to be accepted or rejected on its arrival irrevocably. The objective is to maximize the sum of the value of the accepted items such that the sum of their weights is below a budget/capacity. Conventionally a hard budget/capacity constraint is considered, for which variety of results are available. In modern applications, e.g., in wireless networks, data centres, cloud computing, etc., enforcing the capacity constraint in expectation is sufficient. With this motivation, we consider the knapsack problem with an expected capacity constraint. For the special case of knapsack problem, called the secretary problem, where the weight of each item is unity, we propose an algorithm whose probability of selecting any one of the optimal items is equal to $1-1/e$ and provide a matching lower bound. For the general knapsack problem, we propose an algorithm whose competitive ratio is shown to be $1/4e$ that is significantly better than the best known competitive ratio of $1/10e$ for the knapsack problem with the hard capacity constraint.

Citations (10)

Summary

We haven't generated a summary for this paper yet.