Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a double-variable inequality and elliptic systems involving critical Hardy-Sobolev exponents (1711.10477v1)

Published 27 Nov 2017 in math.AP

Abstract: Let $\Omega\subset \mathbb{R}N$ ($N\geq 3$) be an open domain which is not necessarily bounded. The sharp constant and extremal functions to the following kind of double-variable inequalities $$ S_{\alpha,\beta,\lambda,\mu}(\Omega) \Big(\int_\Omega \big(\lambda \frac{|u|{2*(s)}}{|x|s}+\mu \frac{|v|{2(s)}}{|x|s}+2^(s)\kappa \frac{|u|\alpha |v|\beta}{|x|s}\big)dx\Big){\frac{2}{2*(s)}}$$ $$\leq \int_\Omega \big(|\nabla u|2+|\nabla v|2\big)dx$$ for $(u,v)\in {\mathscr{D}}:=D_{0}{1,2}(\Omega)\times D_{0}{1,2}(\Omega)$ will be explored. Further results about the sharp constant $S_{\alpha,\beta,\lambda,\mu}(\Omega)$ with its extremal functions when $\Omega$ is a general open domain will be involved. For this goal, we consider the following elliptic systems involving multiple Hardy-Sobolev critical exponents: $$\begin{cases} -\Delta u-\lambda \frac{|u|{2*(s_1)-2}u}{|x|{s_1}}=\kappa\alpha \frac{1}{|x|{s_2}}|u|{\alpha-2}u|v|\beta\quad &\hbox{in}\;\Omega, -\Delta v-\mu \frac{|v|{2*(s_1)-2}v}{|x|{s_1}}=\kappa\beta \frac{1}{|x|{s_2}}|u|{\alpha}|v|{\beta-2}v\quad &\hbox{in}\;\Omega, (u,v)\in \mathscr{D}:=D_{0}{1,2}(\Omega)\times D_{0}{1,2}(\Omega), \end{cases}$$ where $s_1,s_2\in (0,2), \alpha>1,\beta>1, \lambda>0,\mu>0,\kappa\neq 0, \alpha+\beta\leq 2*(s_2)$. Here, $2*(s):=\frac{2(N-s)}{N-2}$ is the critical Hardy-Sobolev exponent. We mainly study the critical case (i.e., $\alpha+\beta=2*(s_2)$) when $\Omega$ is a cone (in particular, $\Omega=\mathbb{R}_+N$ or $\Omega=\mathbb{R}N$). We will establish a sequence of fundamental results including regularity, symmetry, existence and multiplicity, uniqueness and nonexistence, {\it etc.}

Summary

We haven't generated a summary for this paper yet.