Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language Bootstrapping: Learning Word Meanings From Perception-Action Association (1711.09714v1)

Published 27 Nov 2017 in cs.RO, cs.CL, cs.HC, and stat.ML

Abstract: We address the problem of bootstrapping language acquisition for an artificial system similarly to what is observed in experiments with human infants. Our method works by associating meanings to words in manipulation tasks, as a robot interacts with objects and listens to verbal descriptions of the interactions. The model is based on an affordance network, i.e., a mapping between robot actions, robot perceptions, and the perceived effects of these actions upon objects. We extend the affordance model to incorporate spoken words, which allows us to ground the verbal symbols to the execution of actions and the perception of the environment. The model takes verbal descriptions of a task as the input and uses temporal co-occurrence to create links between speech utterances and the involved objects, actions, and effects. We show that the robot is able form useful word-to-meaning associations, even without considering grammatical structure in the learning process and in the presence of recognition errors. These word-to-meaning associations are embedded in the robot's own understanding of its actions. Thus, they can be directly used to instruct the robot to perform tasks and also allow to incorporate context in the speech recognition task. We believe that the encouraging results with our approach may afford robots with a capacity to acquire language descriptors in their operation's environment as well as to shed some light as to how this challenging process develops with human infants.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Giampiero Salvi (18 papers)
  2. Luis Montesano (19 papers)
  3. Alexandre Bernardino (31 papers)
  4. José Santos-Victor (22 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com