Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networks (1711.09666v1)

Published 27 Nov 2017 in cs.CR, cs.LG, cs.NE, and stat.ML

Abstract: In recent years numerous advanced malware, aka advanced persistent threats (APT) are allegedly developed by nation-states. The task of attributing an APT to a specific nation-state is extremely challenging for several reasons. Each nation-state has usually more than a single cyber unit that develops such advanced malware, rendering traditional authorship attribution algorithms useless. Furthermore, those APTs use state-of-the-art evasion techniques, making feature extraction challenging. Finally, the dataset of such available APTs is extremely small. In this paper we describe how deep neural networks (DNN) could be successfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.

Citations (35)

Summary

We haven't generated a summary for this paper yet.