Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realistic multi-microphone data simulation for distant speech recognition (1711.09470v1)

Published 26 Nov 2017 in eess.AS and cs.SD

Abstract: The availability of realistic simulated corpora is of key importance for the future progress of distant speech recognition technology. The reliability, flexibility and low computational cost of a data simulation process may ultimately allow researchers to train, tune and test different techniques in a variety of acoustic scenarios, avoiding the laborious effort of directly recording real data from the targeted environment. In the last decade, several simulated corpora have been released to the research community, including the data-sets distributed in the context of projects and international challenges, such as CHiME and REVERB. These efforts were extremely useful to derive baselines and common evaluation frameworks for comparison purposes. At the same time, in many cases they highlighted the need of a better coherence between real and simulated conditions. In this paper, we examine this issue and we describe our approach to the generation of realistic corpora in a domestic context. Experimental validation, conducted in a multi-microphone scenario, shows that a comparable performance trend can be observed with both real and simulated data across different recognition frameworks, acoustic models, as well as multi-microphone processing techniques.

Citations (35)

Summary

We haven't generated a summary for this paper yet.