Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

T1 theorem for Campanato spaces on domains (1711.09303v1)

Published 25 Nov 2017 in math.FA

Abstract: Given a Lipschitz domain $D\subset \mathbb{R}d,$ a Calder\'on-Zygmund operator $T$ and a modulus of continuity $\omega(x),$ we solve a problem when the restricted operator $T_Df=T(f\chi_D)\chi_D$ sends the Campanato space $\mathcal{C}\omega(D)$ into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function $\chi_D$ of $D$: $$(T\chi_D)\chi_D \in \mathcal{C}{\tilde{\omega}}(D),$$ assumed $\tilde{\omega}(x)= \omega(x)/\int_x1 \omega(t)dt/t.$ To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of $D$ and the operator $T.$ It is proved that the restricted Calder\'on-Zygmund operator $T_D$ with the even kernel is bounded on $\mathcal{C}_\omega(D),$ provided $D$ be $C{1,\tilde{\omega}}-$smooth domain. This result is sharp.

Summary

We haven't generated a summary for this paper yet.