Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning (1711.09012v1)

Published 20 Nov 2017 in cs.GT and cs.NI

Abstract: Due to the ever-increasing popularity of resource-hungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they suffer from limitations in computational and radio resources, which calls for fair efficient resource management in the MEC servers. The problem is however challenging due to the ultra-high density, distributed nature, and intrinsic randomness of next generation wireless networks. In this article, we focus on the application of game theory and reinforcement learning for efficient distributed resource management in MEC, in particular, for computation offloading. We briefly review the cutting-edge research and discuss future challenges. Furthermore, we develop a game-theoretical model for energy-efficient distributed edge server activation and study several learning techniques. Numerical results are provided to illustrate the performance of these distributed learning techniques. Also, open research issues in the context of resource management in MEC servers are discussed.

Citations (53)

Summary

We haven't generated a summary for this paper yet.