Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval (1711.08976v2)

Published 24 Nov 2017 in cs.IR, cs.SD, and eess.AS

Abstract: Little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics are taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Different modality data are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study on understanding the correlation between language and music audio through deep architectures for learning the paired temporal correlation of audio and lyrics. Pre-trained Doc2vec model followed by fully-connected layers (fully-connected deep neural network) is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) pre-trained CNN followed by fully-connected layers is investigated for representing music audio. ii) We further suggest an end-to-end architecture that simultaneously trains convolutional layers and fully-connected layers to better learn temporal structures of music audio. Particularly, our end-to-end deep architecture contains two properties: simultaneously implementing feature learning and cross-modal correlation learning, and learning joint representation by considering temporal structures. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yi Yu (223 papers)
  2. Suhua Tang (13 papers)
  3. Francisco Raposo (7 papers)
  4. Lei Chen (484 papers)
Citations (106)