Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Semi-Random Mixtures of Gaussians (1711.08841v1)

Published 23 Nov 2017 in cs.DS and cs.LG

Abstract: Gaussian mixture models (GMM) are the most widely used statistical model for the $k$-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural semi-random model for $k$-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. In our model, a semi-random adversary is allowed to make arbitrary "monotone" or helpful changes to the data generated from the Gaussian mixture model. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd's algorithm for $k$-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching information-theoretic lower bound on the number of misclassified points incurred by any $k$-means clustering algorithm on the semi-random model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.