Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters (1711.08813v1)

Published 23 Nov 2017 in hep-ex, cs.LG, and physics.data-an

Abstract: High-precision modeling of subatomic particle interactions is critical for many fields within the physical sciences, such as nuclear physics and high energy particle physics. Most simulation pipelines in the sciences are computationally intensive -- in a variety of scientific fields, Generative Adversarial Networks have been suggested as a solution to speed up the forward component of simulation, with promising results. An important component of any simulation system for the sciences is the ability to condition on any number of physically meaningful latent characteristics that can effect the forward generation procedure. We introduce an auxiliary task to the training of a Generative Adversarial Network on particle showers in a multi-layer electromagnetic calorimeter, which allows our model to learn an attribute-aware conditioning mechanism.

Citations (62)

Summary

We haven't generated a summary for this paper yet.