Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on Embedded FPGAs (1711.08740v1)

Published 23 Nov 2017 in cs.CV, cs.AR, and cs.LG

Abstract: In recent years, Convolutional Neural Networks (ConvNets) have become an enabling technology for a wide range of novel embedded Artificial Intelligence systems. Across the range of applications, the performance needs vary significantly, from high-throughput video surveillance to the very low-latency requirements of autonomous cars. In this context, FPGAs can provide a potential platform that can be optimally configured based on the different performance needs. However, the complexity of ConvNet models keeps increasing making their mapping to an FPGA device a challenging task. This work presents fpgaConvNet, an end-to-end framework for mapping ConvNets on FPGAs. The proposed framework employs an automated design methodology based on the Synchronous Dataflow (SDF) paradigm and defines a set of SDF transformations in order to efficiently explore the architectural design space. By selectively optimising for throughput, latency or multiobjective criteria, the presented tool is able to efficiently explore the design space and generate hardware designs from high-level ConvNet specifications, explicitly optimised for the performance metric of interest. Overall, our framework yields designs that improve the performance by up to 6.65x over highly optimised embedded GPU designs for the same power constraints in embedded environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (32)

Summary

We haven't generated a summary for this paper yet.