Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularization of Deep Neural Networks with Spectral Dropout (1711.08591v1)

Published 23 Nov 2017 in cs.CV

Abstract: The big breakthrough on the ImageNet challenge in 2012 was partially due to the dropout' technique used to avoid overfitting. Here, we introduce a new approach calledSpectral Dropout' to improve the generalization ability of deep neural networks. We cast the proposed approach in the form of regular Convolutional Neural Network (CNN) weight layers using a decorrelation transform with fixed basis functions. Our spectral dropout method prevents overfitting by eliminating weak and `noisy' Fourier domain coefficients of the neural network activations, leading to remarkably better results than the current regularization methods. Furthermore, the proposed is very efficient due to the fixed basis functions used for spectral transformation. In particular, compared to Dropout and Drop-Connect, our method significantly speeds up the network convergence rate during the training process (roughly x2), with considerably higher neuron pruning rates (an increase of ~ 30%). We demonstrate that the spectral dropout can also be used in conjunction with other regularization approaches resulting in additional performance gains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Salman Khan (244 papers)
  2. Munawar Hayat (73 papers)
  3. Fatih Porikli (141 papers)
Citations (98)

Summary

We haven't generated a summary for this paper yet.