Deterministic parallel algorithms for bilinear objective functions (1711.08494v3)
Abstract: Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph $G$ with $m$ edges and $n$ vertices, this takes $\tilde O(\log2 n)$ time and $(m + n) n{o(1)}$ processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (1997) for maximum acyclic subgraph and Gale-Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson-Lindenstrauss Lemma.