Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Node and layer eigenvector centralities for multiplex networks (1711.08448v2)

Published 22 Nov 2017 in cs.SI, cs.NA, math.NA, and physics.soc-ph

Abstract: Eigenvector-based centrality measures are among the most popular centrality measures in network science. The underlying idea is intuitive and the mathematical description is extremely simple in the framework of standard, mono-layer networks. Moreover, several efficient computational tools are available for their computation. Moving up in dimensionality, several efforts have been made in the past to describe an eigenvector-based centrality measure that generalizes Bonacich index to the case of multiplex networks. In this work, we propose a new definition of eigenvector centrality that relies on the Perron eigenvector of a multi-homogeneous map defined in terms of the tensor describing the network. We prove that existence and uniqueness of such centrality are guaranteed under very mild assumptions on the multiplex network. Extensive numerical studies are proposed to test the newly introduced centrality measure and to compare it to other existing eigenvector-based centralities.

Citations (58)

Summary

We haven't generated a summary for this paper yet.