Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symplectic, product and complex structures on 3-Lie algebras (1711.08381v1)

Published 19 Nov 2017 in math.RA, math-ph, math.DG, and math.MP

Abstract: In this paper, first we introduce the notion of a phase space of a 3-Lie algebra and show that a 3-Lie algebra has a phase space if and only if it is sub-adjacent to a 3-pre-Lie algebra. Then we introduce the notion of a product structure on a 3-Lie algebra using the Nijenhuis condition as the integrability condition. A 3-Lie algebra enjoys a product structure if and only if it is the direct sum (as vector spaces) of two subalgebras. We find that there are four types special integrability conditions, and each of them gives rise to a special decomposition of the original 3-Lie algebra. They are also related to $\huaO$-operators, Rota-Baxter operators and matched pairs of 3-Lie algebras. Parallelly, we introduce the notion of a complex structure on a 3-Lie algebra and there are also four types special integrability conditions. Finally, we add compatibility conditions between a complex structure and a product structure, between a symplectic structure and a paracomplex structure, between a symplectic structure and a complex structure, to introduce the notions of a complex product structure, a para-K\"{a}hler structure and a pseudo-K\"{a}hler structure on a 3-Lie algebra. We use 3-pre-Lie algebras to construct these structures. Furthermore, a Levi-Civita product is introduced associated to a pseudo-Riemannian 3-Lie algebra and deeply studied.

Summary

We haven't generated a summary for this paper yet.