Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Allocation Problems in Ride-Sharing Platforms: Online Matching with Offline Reusable Resources (1711.08345v2)

Published 22 Nov 2017 in cs.AI and cs.GT

Abstract: Bipartite matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2 - eps for any given eps greater than 0. We also show that no non-adaptive algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP. Through a data-driven analysis on a massive openly-available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice.

Citations (113)

Summary

We haven't generated a summary for this paper yet.