Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torelli group, Johnson kernel and invariants of homology spheres (1711.07855v3)

Published 21 Nov 2017 in math.GT and math.AT

Abstract: In the late 1980's, it was shown that the Casson invariant appears in the difference between the two filtrations of the Torelli group: the lower central series and the Johnson filtration, and that its core part was identified with the secondary characteristic class $d_1$ associated with the fact that the first $\mathrm{MMM}$ class vanishes on the Torelli group (however it turned out that Johnson proved the former part highly likely prior to the above, see Remark 1.1). This secondary class $d_1$ is a rational generator of $H1(\mathcal{K}_g;\mathbb{Z}){\mathcal{M}_g}\cong\mathbb{Z}$ where $\mathcal{K}_g$ denotes the Johnson subgroup of the mapping class group $\mathcal{M}_g$. Hain proved, as a particular case of his fundamental result, that this is the only difference in degree $2$. In this paper, we prove that no other invariant than the above gives rise to new rational difference between the two filtrations up to degree $6$. We apply this to determine $H_1(\mathcal{K}_g;\mathbb{Q})$ explicitly by computing the description given by Dimca, Hain and Papadima. We also show that any finite type rational invariant of homology $3$-spheres of degrees up to $6$, including the second and the third Ohtsuki invariants, can be expressed by $d_1$ and lifts of Johnson homomorphisms.

Summary

We haven't generated a summary for this paper yet.