Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approaching Miscorrection-free Performance of Product and Generalized Product Codes (1711.07805v1)

Published 21 Nov 2017 in cs.IT and math.IT

Abstract: Product codes (PCs) protect a two-dimensional array of bits using short component codes. Assuming transmission over the binary symmetric channel, the decoding is commonly performed by iteratively applying bounded-distance decoding to the component codes. For this coding scheme, undetected errors in the component decoding-also known as miscorrections-significantly degrade the performance. In this paper, we propose a novel iterative decoding algorithm for PCs which can detect and avoid most miscorrections. The algorithm can also be used to decode many recently proposed classes of generalized PCs such as staircase, braided, and half-product codes. Depending on the component code parameters, our algorithm significantly outperforms the conventional iterative decoding method. As an example, for double-error-correcting Bose-Chaudhuri-Hocquenghem component codes, the net coding gain can be increased by up to 0.4 dB. Moreover, the error floor can be lowered by orders of magnitude, up to the point where the decoder performs virtually identical to a genie-aided decoder that avoids all miscorrections. We also discuss post-processing techniques that can be used to reduce the error floor even further.

Citations (1)

Summary

We haven't generated a summary for this paper yet.