Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting independence of random vectors: generalized distance covariance and Gaussian covariance (1711.07778v3)

Published 21 Nov 2017 in math.PR, math.ST, and stat.TH

Abstract: Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Sz\'{e}kely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric L\'{e}vy measures and the corresponding real-valued continuous negative definite functions. The L\'{e}vy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework. From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.

Summary

We haven't generated a summary for this paper yet.