Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Accuracy Optimization: On the Value of Item Embeddings for Student Job Recommendations (1711.07762v1)

Published 21 Nov 2017 in cs.IR

Abstract: In this work, we address the problem of recommending jobs to university students. For this, we explore the utilization of neural item embeddings for the task of content-based recommendation, and we propose to integrate the factors of frequency and recency of interactions with job postings to combine these item embeddings. We evaluate our job recommendation system on a dataset of the Austrian student job portal Studo using prediction accuracy, diversity and an adapted novelty metric. This paper demonstrates that utilizing frequency and recency of interactions with job postings for combining item embeddings results in a robust model with respect to accuracy and diversity, which also provides the best adapted novelty results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.