Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-shot Learning via Shared-Reconstruction-Graph Pursuit (1711.07302v1)

Published 20 Nov 2017 in cs.CV

Abstract: Zero-shot learning (ZSL) aims to recognize objects from novel unseen classes without any training data. Recently, structure-transfer based methods are proposed to implement ZSL by transferring structural knowledge from the semantic embedding space to image feature space to classify testing images. However, we observe that such a knowledge transfer framework may suffer from the problem of the geometric inconsistency between the data in the training and testing spaces. We call this problem as the space shift problem. In this paper, we propose a novel graph based method to alleviate this space shift problem. Specifically, a Shared Reconstruction Graph (SRG) is pursued to capture the common structure of data in the two spaces. With the learned SRG, each unseen class prototype (cluster center) in the image feature space can be synthesized by the linear combination of other class prototypes, so that testing instances can be classified based on the distance to these synthesized prototypes. The SRG bridges the image feature space and semantic embedding space. By applying spectral clustering on the learned SRG, many meaningful clusters can be discovered, which interprets ZSL performance on the datasets. Our method can be easily extended to the generalized zero-shot learning setting. Experiments on three popular datasets show that our method outperforms other methods on all datasets. Even with a small number of training samples, our method can achieve the state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bo Zhao (242 papers)
  2. Xinwei Sun (43 papers)
  3. Yuan Yao (292 papers)
  4. Yizhou Wang (162 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.