Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $e$-positivity and $e$-unimodality of chromatic quasisymmetric functions (1711.07152v2)

Published 20 Nov 2017 in math.CO

Abstract: The $e$-positivity conjecture and the $e$-unimodality conjecture of chromatic quasisymmetric functions are proved for some classes of natural unit interval orders. Recently, J. Shareshian and M. Wachs introduced chromatic quasisymmetric functions as a refinement of Stanley's chromatic symmetric functions and conjectured the $e$-positivity and the $e$-unimodality of these functions. The $e$-positivity of chromatic quasisymmetric functions implies the $e$-positivity of corresponding chromatic symmetric functions, and our work resolves Stanley's conjecture on chromatic symmetric functions of $(3+1)$-free posets for two classes of natural unit interval orders.

Summary

We haven't generated a summary for this paper yet.