Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices (1711.07103v3)

Published 19 Nov 2017 in math.PR, math-ph, and math.MP

Abstract: We analyze the distribution of eigenvectors for mesoscopic, mean-field perturbations of diagonal matrices in the bulk of the spectrum. Our results apply to a generalized $N\times N$ Rosenzweig-Porter model. We prove that the eigenvectors entries are asymptotically Gaussian with a specific variance, localizing them onto a small, explicit part of the spectrum. For a well spread initial spectrum, this variance profile universally follows a heavy-tailed Cauchy distribution. In the case of smooth entries, we also obtain a strong form of quantum unique ergodicity as an overwhelming probability bound on the eigenvectors probability mass. The proof relies on a priori local laws for this model and the eigenvector moment flow.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)