Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Approach To Estimate The Collision Probability For Automotive Applications (1711.07060v10)

Published 19 Nov 2017 in eess.SY and cs.SY

Abstract: We revisit the computation of a probability of collision in the context of automotive collision avoidance (also referred to as conflict detection in other contexts). After reviewing existing approaches to the definition and computation of a collision probability we argue that the question "What is the probability of collision within the next three seconds?" can be answered on the basis of a collision probability rate. Using results on level crossings for vector stochastic processes we derive a general expression for the upper bound of the distribution of the collision probability rate. This expression is valid for arbitrary prediction models including process noise. We demonstrate in several examples that distributions obtained by large-scale Monte-Carlo simulations obey this bound and in many cases approximately saturate the bound. We derive an approximation for the distribution of the collision probability rate that can be computed on an embedded platform. An upper bound of the probability of collision is then obtained by one-dimensional numerical integration over the time period of interest. A straightforward application of this method applies to the collision of an extended object with a second point-like object. Using an abstraction of the second object by salient points of its boundary we propose an application of this method to two extended objects with arbitrary orientation. Finally, the distribution of the collision probability rate is compared to approximations of time-to-collision distributions for one-dimensional motions that have been obtained previously.

Citations (6)

Summary

We haven't generated a summary for this paper yet.