Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferable Semi-supervised Semantic Segmentation (1711.06828v2)

Published 18 Nov 2017 in cs.CV

Abstract: The performance of deep learning based semantic segmentation models heavily depends on sufficient data with careful annotations. However, even the largest public datasets only provide samples with pixel-level annotations for rather limited semantic categories. Such data scarcity critically limits scalability and applicability of semantic segmentation models in real applications. In this paper, we propose a novel transferable semi-supervised semantic segmentation model that can transfer the learned segmentation knowledge from a few strong categories with pixel-level annotations to unseen weak categories with only image-level annotations, significantly broadening the applicable territory of deep segmentation models. In particular, the proposed model consists of two complementary and learnable components: a Label transfer Network (L-Net) and a Prediction transfer Network (P-Net). The L-Net learns to transfer the segmentation knowledge from strong categories to the images in the weak categories and produces coarse pixel-level semantic maps, by effectively exploiting the similar appearance shared across categories. Meanwhile, the P-Net tailors the transferred knowledge through a carefully designed adversarial learning strategy and produces refined segmentation results with better details. Integrating the L-Net and P-Net achieves 96.5% and 89.4% performance of the fully-supervised baseline using 50% and 0% categories with pixel-level annotations respectively on PASCAL VOC 2012. With such a novel transfer mechanism, our proposed model is easily generalizable to a variety of new categories, only requiring image-level annotations, and offers appealing scalability in real applications.

Citations (27)

Summary

We haven't generated a summary for this paper yet.